
Low Rank Approximation for Learned Query Optimization
Zixuan Yi1, Yao Tian2, Zack Ives1, Ryan Marcus1

1 University of Pennsylvania 2 The Hong Kong University of Science and Technology

Simple, low-overhead
Linear Methods can perform
nearly as effective as complex
deep learning approach for
Offline Learned QO.

Low Rank Workload Matrix

Verified or
default planDBMS

Q

Check
for plan

Best
discovered plan

Inference

New optimals

Offline
execution

Performance
measurement

Estimated
Matrix

Query
submitted

Query
result

LimeQO

1

3

4

1

Online path

Offline path

 Optimizer

Workload
Matrix

22 3

5

4 Execution
 Engine

Workload Matrix M:
Each row represents a SQL query.
Each column represents a hint
(parameterization of the QO).
One possible hint:
Disable Nested Loop Join
Enable Hash Join
Enable Merge Join
Enable Index Scan
Enable Seq Scan
Enable Index-only Scan

Each entry represents the latency
time for DB to execute the query
under the hint.

M is LOW RANK
Intuition: two queries that behave
similarly on some hints are likely
to behave similarly on other hints
as well.

1 ? 10
3 ? ?
10 2 ?

?

?
20

?5 ? 50

!𝑀!" = 𝑄!𝐻"

…

…

…

……

q1

q2

q3

qn

h1 h2 h3 hk

M

× ≈Q

𝑄!

H 𝐻"n

k

r

r

Why? Current Learned QOs cause
unpredictable regressions.
(“my query was fast yesterday, why
is it slow today?”)
How? verify that potential new
query plans are actually better than
the default plan.
Setting: Repetitive workload!
Goal: simultaneously minimize
the workload latency and the total
offline exploration time, while
maintaining the “no-regressions”
guarantee.

Offline Learned QO
Checkout the paper for more detailed info:
zixy17.github.io/pdf/aiDM.pdf

Q%

H& Predicted Latency

FC Layer

FC Layer

Pooling

1 x 1

1 x 128
1 x 5

1 x 5
1 x 138

1 x 64

1 x 32

1 x 256 1 x 128

Option1: LimeQO
(Linear Method Only)

Use Alternating Least Squares
Algorithm to recover the
unobserved entries
from the observed ones.

Option2: LimeQO+
(Adding Query Features in)

Use query plan features in
tree structure (including
cardinality estimation result
and cost) and
QH Matrix embeddings
as input.

LimeQO strategy for Offline Learned QO
Generate the full matrix, then explore the queries with the biggest potential gain ratio
(current min observed value – predicted row min) / predicted row min

Tree Convolution Layers

Experiments
Dataset: CEB core workload
• 3133 queries in total
• takes ~3 hours for PostgreSQL default to finish
• ~1 hour if every query is chosen the optimal hint

Random randomly explore
unobserved entries.
Greedy explore the
tail latency queries first.
LimeQO uses only
Linear Method to predict.
LimeQO+ uses query features
and matrix embeddings
to train and predict.
Offline-Bao uses TCNN to
select unobserved entries to
explore. It does not verify plans
before selecting them so
regressions happens.

Total Latency Time is simply
adding up the observed row
minimum in the workload matrix.
Offline Exploration Time is the
total time to execute the query
plan + overhead time of the
technique. We also applied
timeout and censored techniques
to reduce offline time.

Caption: Both LimeQO and LimeQO+ outperform Bao.
Even without any features, pure linear method
(LimeQO) can perform nearly as effective as the one
using complex Neural Network (LimeQO+).

