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ABSTRACT

We present LimeQO, a learned steering query optimizer based on
linear methods, such as matrix completion, for repetitive workloads.
LimeQO can forgo expensive neural networks by taking advantage
of the low-rank structure of query workloads. Using offline exe-
cution, LimeQO can accelerate workloads by up to 2x with zero
regressions in just a few hours, while using 100-1000x fewer com-
putational resources than deep learning techniques.
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1 INTRODUCTION

Recent advances in learned query optimization — using machine
learning to completely replace or aid a traditional query optimizer [20]
— have demonstrated significant performance gains [13, 26–28, 31].
However, learned optimizers also have several drawbacks: (1) the
nature of learning techniques can cause unpredictable regressions
(e.g., “my query was fast yesterday, why is it slow today?”), (2) they
suffer from expensive training and inference costs (e.g., from neural
networks [14] or from training data collection times [26]), and (3)
they often make assumptions about the underlying DBMS, such as
the availability of features or the structure of query plans.

In the context of repetitive analytic workloads, such as updating
live dashboards and timely report generation, two recent works in
production systems have addressed the first issue of unpredictable
performance regressions [2, 30]. The core idea behind both ap-
proaches is to use offline execution to verify that potential new
query plans are actually better than the default plan. If verified, the
new query plan is used when an eligible query arrives. This simple
technique ensures that no query ever regresses (absent data shift),
but at the cost of potentially expensive offline execution.

Here, we formalize and expand on this offline exploration ap-
proach. Our proposed framework seeks to minimize offline resource
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Figure 2: LimeQO system model

usage while maximizing performance improvements, maintaining
the “no-regressions” guarantee (compared to the underlying tra-
ditional optimizer) of prior work [2, 30]. While our framework
can take advantage of expensive neural networks, we introduce a
new approach, called LimeQO, which is trained with purely linear
methods, leading to drastically simpler and lower overhead imple-
mentations. Furthermore, LimeQOmakes no assumptions about the
underlying DBMS, except that each query plan has a number of al-
ternatives with measurable latency: we do not assume the presence
of a cardinality estimator, cost model, or even an operator tree.

Our core insight is to model the problem of offline optimization
as a matrix completion [8] problem (a technique previously used
for collaborative filtering). We can represent a workload with 𝑛 re-
peated queries and𝑘 hints (parameterizations of the query optimizer
that potentially result in different query plans, as in [2, 13, 26, 30])
as aworkload matrix W, where each entry is the latency of a plan, as
shown in Figure 1. Selecting the best hint for each query amounts to
taking a row-wise minimum. Unfortunately, computing the whole
matrix would require 𝑛 × 𝑘 query executions, which could be pro-
hibitive, so instead we consider the workload matrix to be partially
observed: some entries are known (observed, or part of the training
set), and other entries are unknown (unobserved).

One way to predict the missing entries in W is to train a predic-
tive model on the observed entries ofW, then use that predictive
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model to construct an estimate Ŵ. Unsurprisingly, computationally
expensive tree convolution neural networks (TCNNs) [14, 16] can
do a good job of approximating W. Surprisingly, however, we find
that the workload matrix W has a low rank 𝑟 , which means that
(among other things) we can construct an accurate estimate using
two factored matrices A ∈ R𝑛×𝑟 and B ∈ R𝑘×𝑟 : Ŵ = AB𝑇 . This
approximation can be found using purely linear methods that use
100x less computational resources than TCNNs, and reduces
inference time to the dot product of two 𝑟 -dimensional vectors.
Intuitively,W is low rank because two queries that behave similarly
on some hints are likely to behave similarly on other hints as well; this
means that a large portion ofW can be explained by commonalities
between queries and hints in the user’s specific workload.

Experimentally, we show that LimeQO can accelerate a 10-hour
workload by a factor of 2 with only a few hours of offline

exploration time, making LimeQO’s performance comparable
to expensive neural networks. We believe that our initial results
demonstrate that linear methods are promising additions to a suite
of learned optimization techniques. In ongoing work, we are consid-
ering several open challenges, such as incorporating novel queries
that were not part of the training set, as well as integrating linear
and neural estimation techniques (Section 6).

We make the following contributions:
• We formalize the problem of offline exploration for query opti-
mization in Section 2.
• We present LimeQO, a learned query optimizer that uses only
linearmethods in Section 3.
• We present a preliminary experimental evaluation of LimeQO in
Section 4.

2 PROBLEM DEFINITION

Our system model is depicted in Figure 2. Our framework has two
paths: an online path, in which user-submitted queries are executed
using plans that have been verified to be fast, and an offline path,
where LimeQO can perform offline exploration. In the online path,
❶ user-submitted queries are received by the DBMS’ traditional
optimizer. Then, ❷ the optimizer asks LimeQO if a better query plan
has been observed for this query. ❸ LimeQO replies with either a
query plan that is faster than the default plan, or the default plan.
❹ This verified plan is then executed,❺ and the results are returned.
In the offline path, LimeQO searches for better query plans. This
offline search could happen when the DBMS is idle [6], or could be
performed on a snapshot of the database. During this time, LimeQO
will ❶ predict the performance of all query plans in the workload
matrix, and then ❷ select the most promising query plans. ❸ These
promising plans are executed, ❹ and their performance is recorded.
❺ The now-observed values are then stored in the workload matrix.

A naive implementation of LimeQO could simply evaluate ran-
dom unobserved query plans, but this strategy could waste offline
execution time testing bad plans. Thus, LimeQO must strategically
use each moment of offline execution time to create the largest
improvement to the overall workload.

Next, we formalize this problem.
Formulation. Let 𝑄 = {𝑞1, . . . , 𝑞𝑛} be a set of regularly executed
queries, and let 𝐻 = {ℎ1, . . . , ℎ𝑘 } be a set of hints. We define a
workload matrixW as a 𝑛 × 𝑘 matrix that holds the performance

metric (e.g., latency) for each query (row) and for each hint (column):
that is,W𝑖 𝑗 represents the latency of running query 𝑞𝑖 with hint ℎ 𝑗 .
Since computing W is prohibitive, we assume we only have access
to a partially observed copy ofW, denoted as W̃:

W̃𝑖 𝑗 =

{
W𝑖 𝑗 ifW𝑖 𝑗 is observed
∞ otherwise

(1)

When a query 𝑞𝑖 ∈ 𝑄 arrives, we select the hint ℎ 𝑗 with the best
observed latency, that is, the minimum value in the row W̃𝑖 . Our
goal is to design an exploration policy to reveal unobserved entries
that can optimize performance while minimizing the offline time
spent revealing entries of W̃. We define 𝑃 as the current workload
latency,1 (i.e., the sum of the minimum observed values for each
query) as follows:

𝑃 (W̃) =
𝑛∑︁
𝑖=1

min
1≤ 𝑗≤𝑘

W̃𝑖 𝑗 (2)

andwe define𝑇 as the offline exploration time required for revealing
entries in the matrix to attain W̃:

𝑇 (W̃) =
𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

W̃𝑖 𝑗 · 1{W̃𝑖 𝑗≠∞} (3)

Our goal is to simultaneously minimize the workload latency
𝑃 (W̃) and the total offline exploration time𝑇 (W̃). Note that 𝑃 (W̃)
can be trivially independently minimized by exploring all of W,
while 𝑇 (W̃) can be trivially independently minimized by doing
no exploration at all. Thus, our goal is to find an algorithm that
minimizes both simultaneously.
Why target repetitive workloads? At first glance, considering
only repeating queries may seem like a major restriction. While
there are certainly workloads with few or no repeating queries,
there are also workloads like live dashboards that are almost purely
repetitive [2, 30]. A recent study of the AWS Redshift analytics data-
base product found that more than 50% of the queries executed on
the Redshift fleet were repeated within 24 hours [33]. Thus, we con-
sider repeated workloads an acceptable target for this preliminary
work. We discuss extensions to novel queries in Section 6.

3 OFFLINE EXPLORATION

We propose two greedy techniques: linear methods based on matrix
completion [8] (Section 3.1) and neural methods based on tree
convolution neural networks (TCNN) [14, 16] (Section 3.2).

3.1 Linear methods

At a high level, LimeQO works by approximatingW using matrix
completion [8]: by assuming that W has low rank, the observed
entries ofW can be used to constrain the unobserved entries. After
LimeQO constructs an approximation Ŵ of W, LimeQO selects the
query plan with the largest expected benefit to explore. Notably,
this technique uses the partially observed matrix W̃ directly, and
does not rely on any properties of the queries or their plans (e.g.,
cost estimates, plan structure, operators).

1Practitioners may also be interested in optimizing tail latency instead of total latency,
in which case 𝑃 can be defined as the tail latency of the workload.
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Algorithm 1: ALS

Input: W̃: observed matrix;M: mask matrix; 𝑘 : rank; 𝜆:
regularization parameter; 𝑡 : number of iterations

Output: Completed matrix Ŵ
1 Initialize 𝐴, 𝐵 of size n × r, and k × r randomly ;
2 for 𝑖 = 1 to 𝑡 do
3 Ŵ← M ⊙ W̃ + (1 −M) ⊙ 𝐴𝐵𝑇 ;
4 𝐴← Ŵ𝐵(𝐵𝑇𝐵 + 𝜆𝐼 )−1;
5 𝐴[𝐴 < 0] = 0;
6 Ŵ← M ⊙ W̃ + (1 −M) ⊙ 𝐴𝐵𝑇 ;
7 𝐵 ← Ŵ𝐴(𝐴𝑇𝐴 + 𝜆𝐼 )−1;
8 𝐵 [𝐵 < 0] = 0;

9 Ŵ← M ⊙ W̃ + (1 −M) ⊙ 𝐴𝐵𝑇 ;
10 return Ŵ

Matrix completion. Matrix completion (MC) is a technique used
to recover unobserved entries in a low rank matrix [3, 4, 8, 21]. We
defineM as themask matrix, which has the same shape as W̃:M𝑖 𝑗 =

0 if W̃𝑖 𝑗 = ∞ and M𝑖 𝑗 = 1 otherwise (that is, M is one for observed
entries of W̃ and zero otherwise). Given a partially observed W̃, a
rank constraint 𝑟 , and a regularization parameter 𝜆, we can build
an estimate of W as Ŵ = AB𝑇 by solving:

min
A,B

[
∥M ⊙ (W̃ − AB𝑇 )∥2𝐹 + 𝜆

(
∥A∥2𝐹 + ∥B∥

2
𝐹

)]
(4)

where A and B are 𝑛 × 𝑟 and 𝑘 × 𝑟 matrices, respectively, and ⊙
represents the element-wise product. To find A and B, we use the
alternating least squares (ALS) algorithm [8], which is based on
the following key observation: while Equation 4 is not convex in A
and B, Equation 4 is convex in A for fixed B, and vice versa. Thus,
ALS works by alternating between fitting A assuming a fixed B,
and then fitting B assuming a fixed A (Algorithm 1). Since query
latencies are strictly positive, we additionally constrain A and B to
be non-negative after each step (lines 5 and 8).
Using MC. Next, we explain how LimeQO uses MC for query
optimization, summarized in Algorithm 2. Given an initial W̃, we
first find the current best hint for each query (Line 2-3). Then, we
use MC to construct an estimate Ŵ (Line 4). With the estimated
value, we go through every row of the predictedmatrix and compute
potential improvement, which is the difference between the best
observed plan and the predicted best plan for a query. Then, we
sort the improvements and select the top𝑚 entries (Line 9). In the
case where there are less than𝑚 positive predicted improvements
(Line 10), we will randomly select some unobserved entries (Line 11)
to observe. Finally, we execute the𝑚 selected plans, record their
latency, and updateM and W̃ (Line 12). This process can be repeated
until there is no more offline exploration time left, or when the
algorithm stops finding potential improvements.

3.2 Neural methods

Here, we present an alternative approach to solve offline query
optimization using a TCNN. Our approach is similar to [13, 14], and
we assume query plan features are available (e.g., cost estimates),
and that the underlying optimizer generates tree-structured plans.

Algorithm 2: LimeQO

Input: W̃: initial observed matrix; M: mask matrix; 𝑘 : rank;
𝜆: regularization parameter; 𝑡 : number of iterations

Output: Hint selections [ℎ1, . . . , ℎ𝑛] for workload
1 whileM ≠ 1 do

2 for 𝑖 = 1 to 𝑛 do

3 ℎ𝑖 ← 𝐻 [argmin𝑗 (W̃𝑖 𝑗 )];
4 Ŵ← ALS (W̃,M, 𝑘, 𝜆, 𝑡);
5 for 𝑖 = 1 to 𝑛 do

6 ℎ 𝑗 ← 𝐻 [argmin𝑗 (Ŵ𝑖 𝑗 )];
7 ΔW𝑖 ← min(W̃𝑖 ) − Ŵ𝑖 𝑗 ;
8 add (𝑞𝑖 , ℎ 𝑗 ) to 𝑆 if ΔW𝑖 𝑗 > 0 ;
9 Select top𝑚 largest (𝑞𝑖 , ℎ 𝑗 ) from 𝑆 w.r.t. ΔW𝑖 𝑗 ;

10 if not enough to select then

11 randomly select some unobserved (𝑞𝑖 , ℎ 𝑗 );
12 UpdateM and W̃;
13 return [ℎ1, . . . , ℎ𝑛]

Tree convolution. Tree convolution [16] is a neural network op-
erator that slides tree-shaped filters over query plans, identifying
patterns related to query performance [14]. As a result, TCNNs are
widely used for query optimization problems [2, 9, 13, 27].
Adapting TCNN to our task. Using a TCNN for offline explo-
ration only requires a small change to Algorithm 2: instead of using
MC to construct an estimate of the workload matrix (Line 4), we
train a TCNN model and use it to predict each unobserved value in
W̃. Specifically, the TCNN model is trained on the observed entries
of W̃, using plan features extracted from each query plan. Then,
inference is conducted to generate predicted latencies for all unob-
served entries. Consequently, Ŵ consists of the actual latencies for
observed entries and the TCNN’s predictions for unobserved ones.

4 INITIAL EXPERIMENTAL RESULTS

Our preliminary experimental results seek to answer three key
questions:

(1) How does LimeQO’s performance compare to simple base-
lines and deep learning methods? (Section 4.1)

(2) How does the overhead of LimeQO’s linearmethods compare
to the overhead of deep learning methods? (Section 4.2)

(3) What is the approximate rank of the workload matrix? (Sec-
tion 4.3)

Experimental setup. We evaluated LimeQO using PostgreSQL
16.1 [1] and the CEB core workload (3133 queries) [17] over the
IMDb database [12]. LimeQO uses the same 49 hints as Bao [13],
which are based on six configuration parameters where we can
enable or disable hash join, merge join, nested loop join, index
scan, sequential scan, and index-only scan.2 All experiments were
conducted on a server running 64-bit Ubuntu 22.04 with Intel(R)
Xeon(R) Gold 6248R CPU@ 3.00GHz, 503 GB RAM, and an NVIDIA
A100 GPU. Without LimeQO, PostgreSQL runs the CEB workload

2It is not possible to turn off all join operators or turn off all scan operators, hence 49
hints instead of 64.
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in 3 hours. Each experiment is executed five times; we plot the
average and standard deviation.
Techniques tests. We compare four different methods. For each
method, we initially reveal the entries in the workload matrix cor-
responding to the default plan produced by PostgreSQL, simulating
an environment where queries are executed repeatedly.
• LimeQO: use MC to explore the matrix as described in Section 3.1.
We set 𝑟 = 5, 𝜆 = 0.2 and 𝑡 = 50 in Algorithm 1.
• Random: explore the workload matrix by randomly selecting
unobserved entries.
• TCNN: uses TCNN to predict unobserved matrix entries as de-
scribed in Section 3.2.We use the same TCNN architecture as [13],
except that we add a dropout layer [22] with 𝑝 = 0.3 between
each tree convolution layer, which universally improved results.
Training is performed with Adam [10] using a batch size of 32,
and is run for 100 epochs or convergence (defined as a decrease
in training loss of less than 1% over 10 epochs) is reached.
• Offline-Bao: the technique of [13] adapted to offline exploration:
the TCNN is used to select unobserved entries to explore, but
the TCNN model is fully trusted in the online path (and thus
regressions are possible).

4.1 Performance improvements

Figure 3 shows that with 2 hours of offline exploration time, LimeQO
and TCNN can reduce the overall workload time to 1.7 hours (56% of
the default workload execution). The relatively poor performance
of Random indicates that this is not due to chance. Following a
total exploration time of 6 hours, LimeQO reduces total latency to
1.5 hours, while TCNN reduces total latency to 1.25 hours. This
represents a speed-up of 2x and 2.4x, respectively.

Our linear method (LimeQO) initially outperforms the neural
method. TCNN later surpasses LimeQO after 1.5 hours of explo-
ration time and achieves a lower total latency time. This shift can
be attributed to TCNN’s deep learning approach, which improves
its performance as it receives more training data. However, this
advantage comes at the cost of much larger training, inference time,
and space overhead. Additionally, TCNN requires rich plan tree
features, while LimeQO does not require such features.

Figure 3 also illustrates the variability in Offline-Bao: since
Offline-Bao does not have to verify plans before selecting them,
Offline-Bao can make improvements quickly. But this perfor-
mance improvement comes at the cost of query regressions. In
that sense, the gap between the Offline-Bao line and the other
techniques can be interpreted as “the cost of zero regressions.”
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4.2 Overhead

Figure 4 shows the overhead required for LimeQO and TCNN
(Offline-Bao’s overhead is the same as TCNN). Clearly, TCNN
requires significantly more resources than LimeQO. In each ex-
ploration step, TCNN must train a model on observed plan trees
and then perform inference for each unobserved plan tree, while
LimeQO only needs to complete the matrix. LimeQO’s overhead
remains approximately constant at 200ms, whereas TCNN’s over-
head on CPU ranges from 30 to 80 seconds. Although two minutes
of overhead may or may not seem significant, we note that TCNN’s
overhead scales with the number of observed entries. Even with a
GPU, TCNN still requires 10 to 70 seconds of overhead time. This
highlights that linear methods use computational resources that
are at least 100 times more efficient.

It is also worth noting that the implementation of a TCNN re-
quires significant complexity and has a large software footprint
(e.g., PyTorch [19]). On the other hand, LimeQO’s implementation
only requires near-universal linear algebra routines.

4.3 Low-rank structure

A critical assumption made by LimeQO is that the workload matrix
W has low rank. If W does not have low rank, it is unlikely that
matrix completion will make accurate predictions for unobserved
plans [4]. Here, we verify that the workload matrix for CEB is in-
deed low rank using singular value decomposition. Figure 5 shows
the singular values of the complete W matrix and, for comparison,
a randomly generated matrix. The singular values of the workload
matrix consist of a few large values and many small values, whereas
the singular values of the random matrix are uniformly distributed
and of similar magnitude. This observation confirms that our work-
load matrix can be well approximated by a low rank matrix, thus
explaining why the ALS algorithm is effective in our scenario.

5 RELATEDWORKS

Recent work on learned query optimization is broadly divided
into two categories: “full” learned optimizers that synthesize entire
query plans [5, 9, 11, 14, 15, 18, 27, 29, 31], and “steering” learned
optimizers that sit on top of a traditional optimizer [13, 26, 28].
The latter “steering” approach has fewer degrees of freedom, but
exhibits lower variation, leading to adoption in some production
systems [2, 30, 32]. Since any performance variation can be harm-
ful to downstream applications, offline execution is often used to
verify performance improvements [2, 24, 30], although confidence-
learning based approaches are also being developed [9, 25].
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Matrix completion is a decades-old [7] technique that has mostly
seen applications in recommendation systems [8], although MC has
also been the subject of deep mathematical investigation [3]. Linear
methods have also been used by learned cardinality estimators [23].

6 FUTURE DIRECTIONS & CONCLUSIONS

This preliminarywork has presented a framework for zero-regression
offline learned query optimization, and shown how simple, low-
overhead linear methods can be nearly as effective as complex deep
learning approaches, without requiring any plan features or making
assumptions about the underlying DBMS. Several open questions
and challenges remain to be investigated.
Transductive techniques. InML terms, techniques such as TCNNs
are called inductive because they learn a model from training inputs
and labels and then predict labels for unseen test inputs. LimeQO, on
the other hand, is an transductive technique, since training inputs,
training labels, and test data are known in advance (only test labels
are unknown). What might a transductive TCNN look like? Can
MC and TCNN be combined in some way that results in a smaller
TCNN? Or perhaps there is a middle ground between dead simple
techniques like MC and more complex techniques like TCNN?
Online optimization. A major weakness of our preliminary ver-
sion of LimeQO is handling novel queries. Adding a new, empty row
to the workload matrix with no entries results in any arbitrary pre-
diction satisfying Equation 4 (an under-constrained linear system).
It may be possible to match novel queries to similar previously ob-
served queries in a predictable way. But an even simpler approach
could be to execute novel queries using the default optimizer first,
then adding a populated row to the matrix afterward. We leave the
investigation and evaluation of such techniques to future work.
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