
Low Rank Approximation for LearnedQuery Optimization
Zixuan Yi

University of Pennsylvania
zixy@cis.upenn.edu

Yao Tian
The Hong Kong University of Science and Technology

ytianbc@cse.ust.hk

Zachary G. Ives
University of Pennsylvania

zives@cis.upenn.edu

Ryan Marcus
University of Pennsylvania
rcmarcus@cis.upenn.edu

ABSTRACT

We present LimeQO, a learned steering query optimizer based on
linear methods, such as matrix completion, for repetitive workloads.
LimeQO can forgo expensive neural networks by taking advantage
of the low-rank structure of query workloads. Using offline exe-
cution, LimeQO can accelerate workloads by up to 2x with zero
regressions in just a few hours, while using 100-1000x fewer com-
putational resources than deep learning techniques.

ACM Reference Format:

Zixuan Yi, Yao Tian, Zachary G. Ives, and Ryan Marcus. 2024. Low Rank
Approximation for Learned Query Optimization. In Seventh International
Workshop on Exploiting Artificial Intelligence Techniques for Data Manage-
ment (aiDM ’24), June 14, 2024, Santiago, AA, Chile. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3663742.3663974

1 INTRODUCTION

Recent advances in learned query optimization — using machine
learning to completely replace or aid a traditional query optimizer [20]
— have demonstrated significant performance gains [13, 26–28, 31].
However, learned optimizers also have several drawbacks: (1) the
nature of learning techniques can cause unpredictable regressions
(e.g., “my query was fast yesterday, why is it slow today?”), (2) they
suffer from expensive training and inference costs (e.g., from neural
networks [14] or from training data collection times [26]), and (3)
they often make assumptions about the underlying DBMS, such as
the availability of features or the structure of query plans.

In the context of repetitive analytic workloads, such as updating
live dashboards and timely report generation, two recent works in
production systems have addressed the first issue of unpredictable
performance regressions [2, 30]. The core idea behind both ap-
proaches is to use offline execution to verify that potential new
query plans are actually better than the default plan. If verified, the
new query plan is used when an eligible query arrives. This simple
technique ensures that no query ever regresses (absent data shift),
but at the cost of potentially expensive offline execution.

Here, we formalize and expand on this offline exploration ap-
proach. Our proposed framework seeks to minimize offline resource

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
aiDM ’24, June 14, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0680-6/24/06. . . $15.00
https://doi.org/10.1145/3663742.3663974

ℎ1 ℎ2 . . . ℎ𝑘

𝑞1 3 4 . . . ?
𝑞2 9 ? . . . 6
𝑞3 ? 15 . . . 3
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝑞𝑛 5 1 . . . 2

Figure 1: An example

workload matrix. Each
row represents a query,

and each column repre-

sents a hint. The value

? represents an unob-

served latency.

Verified or
default planDBMS

Q

Check
for plan

Best
discovered plan

Inference

New optimals

Offline
execution

Performance
measurement

Estimated
Matrix

Query
submitted

Query
result

LimeQO

1

3

4

1

Online path

Offline path

 Optimizer

Workload
Matrix

22 3

5

4 Execution
 Engine

Figure 2: LimeQO system model

usage while maximizing performance improvements, maintaining
the “no-regressions” guarantee (compared to the underlying tra-
ditional optimizer) of prior work [2, 30]. While our framework
can take advantage of expensive neural networks, we introduce a
new approach, called LimeQO, which is trained with purely linear
methods, leading to drastically simpler and lower overhead imple-
mentations. Furthermore, LimeQOmakes no assumptions about the
underlying DBMS, except that each query plan has a number of al-
ternatives with measurable latency: we do not assume the presence
of a cardinality estimator, cost model, or even an operator tree.

Our core insight is to model the problem of offline optimization
as a matrix completion [8] problem (a technique previously used
for collaborative filtering). We can represent a workload with 𝑛 re-
peated queries and𝑘 hints (parameterizations of the query optimizer
that potentially result in different query plans, as in [2, 13, 26, 30])
as aworkload matrix W, where each entry is the latency of a plan, as
shown in Figure 1. Selecting the best hint for each query amounts to
taking a row-wise minimum. Unfortunately, computing the whole
matrix would require 𝑛 × 𝑘 query executions, which could be pro-
hibitive, so instead we consider the workload matrix to be partially
observed: some entries are known (observed, or part of the training
set), and other entries are unknown (unobserved).

One way to predict the missing entries in W is to train a predic-
tive model on the observed entries ofW, then use that predictive

https://orcid.org/0009-0001-8015-8486
https://orcid.org/0000-0001-6876-5059
https://orcid.org/0000-0001-7527-2957
https://orcid.org/0000-0002-1279-1124
https://doi.org/10.1145/3663742.3663974
https://doi.org/10.1145/3663742.3663974

aiDM ’24, June 14, 2024, Santiago, AA, Chile Zixuan Yi, Yao Tian, Zachary G. Ives, and Ryan Marcus

model to construct an estimate Ŵ. Unsurprisingly, computationally
expensive tree convolution neural networks (TCNNs) [14, 16] can
do a good job of approximating W. Surprisingly, however, we find
that the workload matrix W has a low rank 𝑟 , which means that
(among other things) we can construct an accurate estimate using
two factored matrices A ∈ R𝑛×𝑟 and B ∈ R𝑘×𝑟 : Ŵ = AB𝑇 . This
approximation can be found using purely linear methods that use
100x less computational resources than TCNNs, and reduces
inference time to the dot product of two 𝑟 -dimensional vectors.
Intuitively,W is low rank because two queries that behave similarly
on some hints are likely to behave similarly on other hints as well; this
means that a large portion ofW can be explained by commonalities
between queries and hints in the user’s specific workload.

Experimentally, we show that LimeQO can accelerate a 10-hour
workload by a factor of 2 with only a few hours of offline

exploration time, making LimeQO’s performance comparable
to expensive neural networks. We believe that our initial results
demonstrate that linear methods are promising additions to a suite
of learned optimization techniques. In ongoing work, we are consid-
ering several open challenges, such as incorporating novel queries
that were not part of the training set, as well as integrating linear
and neural estimation techniques (Section 6).

We make the following contributions:
• We formalize the problem of offline exploration for query opti-
mization in Section 2.
• We present LimeQO, a learned query optimizer that uses only
linearmethods in Section 3.
• We present a preliminary experimental evaluation of LimeQO in
Section 4.

2 PROBLEM DEFINITION

Our system model is depicted in Figure 2. Our framework has two
paths: an online path, in which user-submitted queries are executed
using plans that have been verified to be fast, and an offline path,
where LimeQO can perform offline exploration. In the online path,
❶ user-submitted queries are received by the DBMS’ traditional
optimizer. Then, ❷ the optimizer asks LimeQO if a better query plan
has been observed for this query. ❸ LimeQO replies with either a
query plan that is faster than the default plan, or the default plan.
❹ This verified plan is then executed,❺ and the results are returned.
In the offline path, LimeQO searches for better query plans. This
offline search could happen when the DBMS is idle [6], or could be
performed on a snapshot of the database. During this time, LimeQO
will ❶ predict the performance of all query plans in the workload
matrix, and then ❷ select the most promising query plans. ❸ These
promising plans are executed, ❹ and their performance is recorded.
❺ The now-observed values are then stored in the workload matrix.

A naive implementation of LimeQO could simply evaluate ran-
dom unobserved query plans, but this strategy could waste offline
execution time testing bad plans. Thus, LimeQO must strategically
use each moment of offline execution time to create the largest
improvement to the overall workload.

Next, we formalize this problem.
Formulation. Let 𝑄 = {𝑞1, . . . , 𝑞𝑛} be a set of regularly executed
queries, and let 𝐻 = {ℎ1, . . . , ℎ𝑘 } be a set of hints. We define a
workload matrixW as a 𝑛 × 𝑘 matrix that holds the performance

metric (e.g., latency) for each query (row) and for each hint (column):
that is,W𝑖 𝑗 represents the latency of running query 𝑞𝑖 with hint ℎ 𝑗 .
Since computing W is prohibitive, we assume we only have access
to a partially observed copy ofW, denoted as W̃:

W̃𝑖 𝑗 =

{
W𝑖 𝑗 ifW𝑖 𝑗 is observed
∞ otherwise

(1)

When a query 𝑞𝑖 ∈ 𝑄 arrives, we select the hint ℎ 𝑗 with the best
observed latency, that is, the minimum value in the row W̃𝑖 . Our
goal is to design an exploration policy to reveal unobserved entries
that can optimize performance while minimizing the offline time
spent revealing entries of W̃. We define 𝑃 as the current workload
latency,1 (i.e., the sum of the minimum observed values for each
query) as follows:

𝑃 (W̃) =
𝑛∑︁
𝑖=1

min
1≤ 𝑗≤𝑘

W̃𝑖 𝑗 (2)

andwe define𝑇 as the offline exploration time required for revealing
entries in the matrix to attain W̃:

𝑇 (W̃) =
𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

W̃𝑖 𝑗 · 1{W̃𝑖 𝑗≠∞} (3)

Our goal is to simultaneously minimize the workload latency
𝑃 (W̃) and the total offline exploration time𝑇 (W̃). Note that 𝑃 (W̃)
can be trivially independently minimized by exploring all of W,
while 𝑇 (W̃) can be trivially independently minimized by doing
no exploration at all. Thus, our goal is to find an algorithm that
minimizes both simultaneously.
Why target repetitive workloads? At first glance, considering
only repeating queries may seem like a major restriction. While
there are certainly workloads with few or no repeating queries,
there are also workloads like live dashboards that are almost purely
repetitive [2, 30]. A recent study of the AWS Redshift analytics data-
base product found that more than 50% of the queries executed on
the Redshift fleet were repeated within 24 hours [33]. Thus, we con-
sider repeated workloads an acceptable target for this preliminary
work. We discuss extensions to novel queries in Section 6.

3 OFFLINE EXPLORATION

We propose two greedy techniques: linear methods based on matrix
completion [8] (Section 3.1) and neural methods based on tree
convolution neural networks (TCNN) [14, 16] (Section 3.2).

3.1 Linear methods

At a high level, LimeQO works by approximatingW using matrix
completion [8]: by assuming that W has low rank, the observed
entries ofW can be used to constrain the unobserved entries. After
LimeQO constructs an approximation Ŵ of W, LimeQO selects the
query plan with the largest expected benefit to explore. Notably,
this technique uses the partially observed matrix W̃ directly, and
does not rely on any properties of the queries or their plans (e.g.,
cost estimates, plan structure, operators).

1Practitioners may also be interested in optimizing tail latency instead of total latency,
in which case 𝑃 can be defined as the tail latency of the workload.

Low Rank Approximation for LearnedQuery Optimization aiDM ’24, June 14, 2024, Santiago, AA, Chile

Algorithm 1: ALS

Input: W̃: observed matrix;M: mask matrix; 𝑘 : rank; 𝜆:
regularization parameter; 𝑡 : number of iterations

Output: Completed matrix Ŵ
1 Initialize 𝐴, 𝐵 of size n × r, and k × r randomly ;
2 for 𝑖 = 1 to 𝑡 do
3 Ŵ← M ⊙ W̃ + (1 −M) ⊙ 𝐴𝐵𝑇 ;
4 𝐴← Ŵ𝐵(𝐵𝑇𝐵 + 𝜆𝐼)−1;
5 𝐴[𝐴 < 0] = 0;
6 Ŵ← M ⊙ W̃ + (1 −M) ⊙ 𝐴𝐵𝑇 ;
7 𝐵 ← Ŵ𝐴(𝐴𝑇𝐴 + 𝜆𝐼)−1;
8 𝐵 [𝐵 < 0] = 0;

9 Ŵ← M ⊙ W̃ + (1 −M) ⊙ 𝐴𝐵𝑇 ;
10 return Ŵ

Matrix completion. Matrix completion (MC) is a technique used
to recover unobserved entries in a low rank matrix [3, 4, 8, 21]. We
defineM as themask matrix, which has the same shape as W̃:M𝑖 𝑗 =

0 if W̃𝑖 𝑗 = ∞ and M𝑖 𝑗 = 1 otherwise (that is, M is one for observed
entries of W̃ and zero otherwise). Given a partially observed W̃, a
rank constraint 𝑟 , and a regularization parameter 𝜆, we can build
an estimate of W as Ŵ = AB𝑇 by solving:

min
A,B

[
∥M ⊙ (W̃ − AB𝑇)∥2𝐹 + 𝜆

(
∥A∥2𝐹 + ∥B∥

2
𝐹

)]
(4)

where A and B are 𝑛 × 𝑟 and 𝑘 × 𝑟 matrices, respectively, and ⊙
represents the element-wise product. To find A and B, we use the
alternating least squares (ALS) algorithm [8], which is based on
the following key observation: while Equation 4 is not convex in A
and B, Equation 4 is convex in A for fixed B, and vice versa. Thus,
ALS works by alternating between fitting A assuming a fixed B,
and then fitting B assuming a fixed A (Algorithm 1). Since query
latencies are strictly positive, we additionally constrain A and B to
be non-negative after each step (lines 5 and 8).
Using MC. Next, we explain how LimeQO uses MC for query
optimization, summarized in Algorithm 2. Given an initial W̃, we
first find the current best hint for each query (Line 2-3). Then, we
use MC to construct an estimate Ŵ (Line 4). With the estimated
value, we go through every row of the predictedmatrix and compute
potential improvement, which is the difference between the best
observed plan and the predicted best plan for a query. Then, we
sort the improvements and select the top𝑚 entries (Line 9). In the
case where there are less than𝑚 positive predicted improvements
(Line 10), we will randomly select some unobserved entries (Line 11)
to observe. Finally, we execute the𝑚 selected plans, record their
latency, and updateM and W̃ (Line 12). This process can be repeated
until there is no more offline exploration time left, or when the
algorithm stops finding potential improvements.

3.2 Neural methods

Here, we present an alternative approach to solve offline query
optimization using a TCNN. Our approach is similar to [13, 14], and
we assume query plan features are available (e.g., cost estimates),
and that the underlying optimizer generates tree-structured plans.

Algorithm 2: LimeQO

Input: W̃: initial observed matrix; M: mask matrix; 𝑘 : rank;
𝜆: regularization parameter; 𝑡 : number of iterations

Output: Hint selections [ℎ1, . . . , ℎ𝑛] for workload
1 whileM ≠ 1 do

2 for 𝑖 = 1 to 𝑛 do

3 ℎ𝑖 ← 𝐻 [argmin𝑗 (W̃𝑖 𝑗)];
4 Ŵ← ALS (W̃,M, 𝑘, 𝜆, 𝑡);
5 for 𝑖 = 1 to 𝑛 do

6 ℎ 𝑗 ← 𝐻 [argmin𝑗 (Ŵ𝑖 𝑗)];
7 ΔW𝑖 ← min(W̃𝑖) − Ŵ𝑖 𝑗 ;
8 add (𝑞𝑖 , ℎ 𝑗) to 𝑆 if ΔW𝑖 𝑗 > 0 ;
9 Select top𝑚 largest (𝑞𝑖 , ℎ 𝑗) from 𝑆 w.r.t. ΔW𝑖 𝑗 ;

10 if not enough to select then

11 randomly select some unobserved (𝑞𝑖 , ℎ 𝑗);
12 UpdateM and W̃;
13 return [ℎ1, . . . , ℎ𝑛]

Tree convolution. Tree convolution [16] is a neural network op-
erator that slides tree-shaped filters over query plans, identifying
patterns related to query performance [14]. As a result, TCNNs are
widely used for query optimization problems [2, 9, 13, 27].
Adapting TCNN to our task. Using a TCNN for offline explo-
ration only requires a small change to Algorithm 2: instead of using
MC to construct an estimate of the workload matrix (Line 4), we
train a TCNN model and use it to predict each unobserved value in
W̃. Specifically, the TCNN model is trained on the observed entries
of W̃, using plan features extracted from each query plan. Then,
inference is conducted to generate predicted latencies for all unob-
served entries. Consequently, Ŵ consists of the actual latencies for
observed entries and the TCNN’s predictions for unobserved ones.

4 INITIAL EXPERIMENTAL RESULTS

Our preliminary experimental results seek to answer three key
questions:

(1) How does LimeQO’s performance compare to simple base-
lines and deep learning methods? (Section 4.1)

(2) How does the overhead of LimeQO’s linearmethods compare
to the overhead of deep learning methods? (Section 4.2)

(3) What is the approximate rank of the workload matrix? (Sec-
tion 4.3)

Experimental setup. We evaluated LimeQO using PostgreSQL
16.1 [1] and the CEB core workload (3133 queries) [17] over the
IMDb database [12]. LimeQO uses the same 49 hints as Bao [13],
which are based on six configuration parameters where we can
enable or disable hash join, merge join, nested loop join, index
scan, sequential scan, and index-only scan.2 All experiments were
conducted on a server running 64-bit Ubuntu 22.04 with Intel(R)
Xeon(R) Gold 6248R CPU@ 3.00GHz, 503 GB RAM, and an NVIDIA
A100 GPU. Without LimeQO, PostgreSQL runs the CEB workload

2It is not possible to turn off all join operators or turn off all scan operators, hence 49
hints instead of 64.

aiDM ’24, June 14, 2024, Santiago, AA, Chile Zixuan Yi, Yao Tian, Zachary G. Ives, and Ryan Marcus

0 1 2 3 4 5 6
Offline Exploration Time (hours)

1.0

1.5

2.0

2.5

3.0

To
ta

l L
at

en
cy

 (h
ou

rs
)

Random
TCNN

LimeQO
Offline-Bao

PG Default
Optimal

Figure 3: Total latency

0 1 2 3 4 5 6
Offline Exploration Time (hours)

0

20

40

60

80

O
ve

rh
ea

d
Ti

m
e

(s
)

LimeQO(CPU)
TCNN(CPU)

TCNN(GPU)

Figure 4: Overhead

in 3 hours. Each experiment is executed five times; we plot the
average and standard deviation.
Techniques tests. We compare four different methods. For each
method, we initially reveal the entries in the workload matrix cor-
responding to the default plan produced by PostgreSQL, simulating
an environment where queries are executed repeatedly.
• LimeQO: use MC to explore the matrix as described in Section 3.1.
We set 𝑟 = 5, 𝜆 = 0.2 and 𝑡 = 50 in Algorithm 1.
• Random: explore the workload matrix by randomly selecting
unobserved entries.
• TCNN: uses TCNN to predict unobserved matrix entries as de-
scribed in Section 3.2.We use the same TCNN architecture as [13],
except that we add a dropout layer [22] with 𝑝 = 0.3 between
each tree convolution layer, which universally improved results.
Training is performed with Adam [10] using a batch size of 32,
and is run for 100 epochs or convergence (defined as a decrease
in training loss of less than 1% over 10 epochs) is reached.
• Offline-Bao: the technique of [13] adapted to offline exploration:
the TCNN is used to select unobserved entries to explore, but
the TCNN model is fully trusted in the online path (and thus
regressions are possible).

4.1 Performance improvements

Figure 3 shows that with 2 hours of offline exploration time, LimeQO
and TCNN can reduce the overall workload time to 1.7 hours (56% of
the default workload execution). The relatively poor performance
of Random indicates that this is not due to chance. Following a
total exploration time of 6 hours, LimeQO reduces total latency to
1.5 hours, while TCNN reduces total latency to 1.25 hours. This
represents a speed-up of 2x and 2.4x, respectively.

Our linear method (LimeQO) initially outperforms the neural
method. TCNN later surpasses LimeQO after 1.5 hours of explo-
ration time and achieves a lower total latency time. This shift can
be attributed to TCNN’s deep learning approach, which improves
its performance as it receives more training data. However, this
advantage comes at the cost of much larger training, inference time,
and space overhead. Additionally, TCNN requires rich plan tree
features, while LimeQO does not require such features.

Figure 3 also illustrates the variability in Offline-Bao: since
Offline-Bao does not have to verify plans before selecting them,
Offline-Bao can make improvements quickly. But this perfor-
mance improvement comes at the cost of query regressions. In
that sense, the gap between the Offline-Bao line and the other
techniques can be interpreted as “the cost of zero regressions.”

0 5 10 15 20 25 30 35 40 45
Singular Value Index

0

1

2

Si
ng

ul
ar

 V
al

ue
 (×

10
)

CEB Matrix
Random Matrix

Figure 5: Singular Value Plot

4.2 Overhead

Figure 4 shows the overhead required for LimeQO and TCNN
(Offline-Bao’s overhead is the same as TCNN). Clearly, TCNN
requires significantly more resources than LimeQO. In each ex-
ploration step, TCNN must train a model on observed plan trees
and then perform inference for each unobserved plan tree, while
LimeQO only needs to complete the matrix. LimeQO’s overhead
remains approximately constant at 200ms, whereas TCNN’s over-
head on CPU ranges from 30 to 80 seconds. Although two minutes
of overhead may or may not seem significant, we note that TCNN’s
overhead scales with the number of observed entries. Even with a
GPU, TCNN still requires 10 to 70 seconds of overhead time. This
highlights that linear methods use computational resources that
are at least 100 times more efficient.

It is also worth noting that the implementation of a TCNN re-
quires significant complexity and has a large software footprint
(e.g., PyTorch [19]). On the other hand, LimeQO’s implementation
only requires near-universal linear algebra routines.

4.3 Low-rank structure

A critical assumption made by LimeQO is that the workload matrix
W has low rank. If W does not have low rank, it is unlikely that
matrix completion will make accurate predictions for unobserved
plans [4]. Here, we verify that the workload matrix for CEB is in-
deed low rank using singular value decomposition. Figure 5 shows
the singular values of the complete W matrix and, for comparison,
a randomly generated matrix. The singular values of the workload
matrix consist of a few large values and many small values, whereas
the singular values of the random matrix are uniformly distributed
and of similar magnitude. This observation confirms that our work-
load matrix can be well approximated by a low rank matrix, thus
explaining why the ALS algorithm is effective in our scenario.

5 RELATEDWORKS

Recent work on learned query optimization is broadly divided
into two categories: “full” learned optimizers that synthesize entire
query plans [5, 9, 11, 14, 15, 18, 27, 29, 31], and “steering” learned
optimizers that sit on top of a traditional optimizer [13, 26, 28].
The latter “steering” approach has fewer degrees of freedom, but
exhibits lower variation, leading to adoption in some production
systems [2, 30, 32]. Since any performance variation can be harm-
ful to downstream applications, offline execution is often used to
verify performance improvements [2, 24, 30], although confidence-
learning based approaches are also being developed [9, 25].

Low Rank Approximation for LearnedQuery Optimization aiDM ’24, June 14, 2024, Santiago, AA, Chile

Matrix completion is a decades-old [7] technique that has mostly
seen applications in recommendation systems [8], although MC has
also been the subject of deep mathematical investigation [3]. Linear
methods have also been used by learned cardinality estimators [23].

6 FUTURE DIRECTIONS & CONCLUSIONS

This preliminarywork has presented a framework for zero-regression
offline learned query optimization, and shown how simple, low-
overhead linear methods can be nearly as effective as complex deep
learning approaches, without requiring any plan features or making
assumptions about the underlying DBMS. Several open questions
and challenges remain to be investigated.
Transductive techniques. InML terms, techniques such as TCNNs
are called inductive because they learn a model from training inputs
and labels and then predict labels for unseen test inputs. LimeQO, on
the other hand, is an transductive technique, since training inputs,
training labels, and test data are known in advance (only test labels
are unknown). What might a transductive TCNN look like? Can
MC and TCNN be combined in some way that results in a smaller
TCNN? Or perhaps there is a middle ground between dead simple
techniques like MC and more complex techniques like TCNN?
Online optimization. A major weakness of our preliminary ver-
sion of LimeQO is handling novel queries. Adding a new, empty row
to the workload matrix with no entries results in any arbitrary pre-
diction satisfying Equation 4 (an under-constrained linear system).
It may be possible to match novel queries to similar previously ob-
served queries in a predictable way. But an even simpler approach
could be to execute novel queries using the default optimizer first,
then adding a populated row to the matrix afterward. We leave the
investigation and evaluation of such techniques to future work.

REFERENCES

[1] [n. d.]. PostgreSQL Database, http://www.postgresql.org/. ([n. d.]).
[2] Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithvi Pandian,

Nikolay Leptev, and Ryan Marcus. 2023. AutoSteer: Learned Query Optimization
for Any SQL Database. PVLDB 14, 1 (Aug. 2023). https://doi.org/10.14778/
3611540.3611544

[3] Emmanuel J. Candes and Terence Tao. 2009. The Power of Convex Re-
laxation: Near-Optimal Matrix Completion. http://arxiv.org/abs/0903.1476
arXiv:0903.1476 [cs, math].

[4] Emmanuel J. Candès and Benjamin Recht. 2009. Exact Matrix Completion via
Convex Optimization. Foundations of Computational Mathematics 9, 6 (Dec. 2009),
717–772. https://doi.org/10.1007/s10208-009-9045-5

[5] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned
Optimizer Towards Generating Efficient and Robust Query Execution Plans.
Proceedings of the VLDB Endowment 16, 7 (March 2023), 1777–1789. https:
//doi.org/10.14778/3587136.3587150

[6] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 153–167. https:
//doi.org/10.1145/3132747.3132772

[7] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. 1992. Using
collaborative filtering to weave an information tapestry. Commun. ACM 35, 12
(1992), 61–70.

[8] Trevor Hastie, Rahul Mazumder, Jason Lee, and Reza Zadeh. 2014. Ma-
trix Completion and Low-Rank SVD via Fast Alternating Least Squares.
arXiv:1410.2596 [stat.ME]

[9] Amin Kamali, Verena Kantere, Calisto Zuzarte, and Vincent Corvinelli. 2024. Roq:
Robust Query Optimization Based on a Risk-aware Learned Cost Model. (2024).
https://doi.org/10.48550/ARXIV.2401.15210

[10] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference for Learning Representations (ICLR ’15).
San Diego, CA.

[11] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. arXiv:1808.03196 [cs] (Aug. 2018). arXiv:1808.03196 [cs]

[12] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB 9, 3
(2015), 204–215. https://doi.org/10.14778/2850583.2850594

[13] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical.
In Proceedings of the 2021 International Conference on Management of Data (SIG-
MOD ’21). China. https://doi.org/10.1145/3448016.3452838

[14] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. PVLDB 12, 11 (2019), 1705–1718. https://doi.org/10.14778/
3342263.3342644

[15] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for
Join Order Enumeration. In First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management (aiDM @ SIGMOD ’18). Houston,
TX.

[16] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI ’16).
AAAI Press, Phoenix, Arizona, 1287–1293.

[17] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardi-
nality Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032.
https://doi.org/10.14778/3476249.3476259

[18] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep Re-
inforcement Learning. In 2nd Workshop on Data Managmeent for End-to-End
Machine Learning (DEEM ’18).

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic Differentiation in PyTorch. In Neural Information Processing
Workshops (NIPS-W ’17).

[20] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
1979. Access Path Selection in a Relational Database Management System. In
SIGMOD ’79 (SIGMOD ’79), John Mylopolous and Michael Brodie (Eds.). Morgan
Kaufmann, San Francisco (CA), 511–522. https://doi.org/10.1016/B978-0-934613-
53-8.50038-8

[21] Nathan Srebro, Jason Rennie, and Tommi Jaakkola. 2004. Maximum-Margin
Matrix Factorization. In Advances in Neural Information Processing Systems,
Vol. 17. MIT Press. https://papers.nips.cc/paper_files/paper/2004/hash/
e0688d13958a19e087e123148555e4b4-Abstract.html

[22] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. The Journal of Machine Learning Research 15, 1 (Jan. 2014), 1929–1958.

[23] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In VLDB (VLDB ’01). 19–28.

[24] Robin Van De Water, Francesco Ventura, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz,
and Volker Markl. 2022. Farming Your ML-based Query Optimizer’s Food. In
2022 IEEE 38th International Conference on Data Engineering (ICDE) (ICDE ’22).
3186–3189. https://doi.org/10.1109/ICDE53745.2022.00294

[25] Lianggui Weng, Rong Zhu, Di Wu, Bolin Ding, Bolong Zheng, and Jingren Zhou.
2024. Eraser: Eliminating Performance Regression on Learned Query Optimizer.
PVLDB 17, 5 (2024), 926–938. https://doi.org/10.14778/3641204.3641205

[26] Lucas Woltmann, Jerome Thiessat, Claudio Hartmann, Dirk Habich, and Wolf-
gang Lehner. 2023. FASTgres: Making Learned Query Optimizer Hinting Ef-
fective. Proceedings of the VLDB Endowment 16, 11 (Aug. 2023), 3310–3322.
https://doi.org/10.14778/3611479.3611528

[27] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and
Ion Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demon-
strations. In Proceedings of the 2022 International Conference on Management of
Data (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
931–944. https://doi.org/10.1145/3514221.3517885

[28] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-Based or
Learning-Based? AHybrid Query Optimizer for Query Plan Selection. Proceedings
of the VLDB Endowment 15, 13 (Sept. 2022), 3924–3936. https://doi.org/10.14778/
3565838.3565846

[29] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learning with Tree-LSTM for Join Order Selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE ’20). 1297–1308. https://doi.org/10.1109/
ICDE48307.2020.00116

[30] Wangda Zhang, Matteo Interlandi, Paul Mineiro, Shi Qiao, Nasim Ghazanfari,
Karlen Lie, Marc Friedman, Rafah Hosn, Hiren Patel, and Alekh Jindal. 2022.
Deploying a Steered Query Optimizer in Production at Microsoft. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22). ACM,
Philadelphia PA USA, 2299–2311. https://doi.org/10.1145/3514221.3526052

https://doi.org/10.14778/3611540.3611544
https://doi.org/10.14778/3611540.3611544
http://arxiv.org/abs/0903.1476
https://doi.org/10.1007/s10208-009-9045-5
https://doi.org/10.14778/3587136.3587150
https://doi.org/10.14778/3587136.3587150
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://arxiv.org/abs/1410.2596
https://doi.org/10.48550/ARXIV.2401.15210
https://arxiv.org/abs/1808.03196
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.1016/B978-0-934613-53-8.50038-8
https://doi.org/10.1016/B978-0-934613-53-8.50038-8
https://papers.nips.cc/paper_files/paper/2004/hash/e0688d13958a19e087e123148555e4b4-Abstract.html
https://papers.nips.cc/paper_files/paper/2004/hash/e0688d13958a19e087e123148555e4b4-Abstract.html
https://doi.org/10.1109/ICDE53745.2022.00294
https://doi.org/10.14778/3641204.3641205
https://doi.org/10.14778/3611479.3611528
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.14778/3565838.3565846
https://doi.org/10.14778/3565838.3565846
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1145/3514221.3526052

aiDM ’24, June 14, 2024, Santiago, AA, Chile Zixuan Yi, Yao Tian, Zachary G. Ives, and Ryan Marcus

[31] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proceedings
of the VLDB Endowment 16, 6 (Feb. 2023), 1466–1479. https://doi.org/10.14778/
3583140.3583160

[32] Rong Zhu, Lianggui Weng, Wenqing Wei, Di Wu, Jiazhen Peng, Yifan Wang,
Bolin Ding, Defu Lian, Bolong Zheng, and Jingren Zhou. 2024. PilotScope:
Steering Databases with Machine Learning Drivers. PVLDB 17, 5 (2024), 980–993.

https://doi.org/10.14778/3641204.3641209
[33] ZiniuWu, RyanMarcus, Zhengchun Liu, Parimarjan Negi, VikramNathan, Pascal

Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and
TimKraska. 2024. Stage: Query Execution Time Prediction in Amazon Redshift. In
Proceedings of the 2024 International Conference on Management of Data (SIGMOD
’24) (SIGMOD ’24). Santiago, Chile. https://doi.org/10.48550/arXiv.2403.02286

https://doi.org/10.14778/3583140.3583160
https://doi.org/10.14778/3583140.3583160
https://doi.org/10.14778/3641204.3641209
https://doi.org/10.48550/arXiv.2403.02286

	Abstract
	1 Introduction
	2 Problem definition
	3 Offline exploration
	3.1 Linear methods
	3.2 Neural methods

	4 Initial experimental results
	4.1 Performance improvements
	4.2 Overhead
	4.3 Low-rank structure

	5 Related works
	6 Future directions & conclusions
	References

