
Simple, low-overhead
linear methods can be almost
as effective as complex
deep learning approach for
Offline Learned QO.

Low Rank Workload Matrix

Verified or
default planDBMS

Q

Check
for plan

Best
discovered plan

Inference

New optimals

Offline
execution

Performance
measurement

Estimated
Matrix

Query
submitted

Query
result

LimeQO

1

3

4

1

Online path

Offline path

 Optimizer

Workload
Matrix

22 3

5

4 Execution
 Engine

Workload Matrix M:
Each row represents a SQL query.
Each column represents a hint (parameterization of the QO).
One possible hint: Disable Nested Loop Join, Enable Hash Join, Enable Merge Join, Enable
Index Scan, Enable Seq Scan, Enable Index-only Scan
Each entry represents the latency time for DB to execute the query under the hint.

M is LOW RANK
Intuition: two queries that behave similarly on some hints are likely to behave similarly on other hints as well.

Why? Current Learned QOs cause unpredictable
regressions. (“my query was fast yesterday, why is
it slow today?”)
Observation: Repetitive workload!
Study at RedShift: 60% of queries are repeated!
How? verify that potential new query plans are
actually better than the default plan.

Goal: simultaneously minimize
the workload latency and the total offline
exploration time, while maintaining the “no-
regressions” guarantee.

Offline Learned QO

Checkout
the paper
for more
detailed
info

Experiments Dataset: CEB core workload (3133 queries in total, 49 hints)
• takes ~3 hours for PostgreSQL default to finish
• ~1 hour if every query is chosen the optimal hint

QO-Advisor select the unexplored entry with the lowest optimizer cost.

Bao-Cache the technique of Bao adapted to offline exploration. Cache the
results to guarantee no regression.
Random randomly explore unobserved entries.

Greedy explore the tail latency queries first.

LimeQO uses only Linear Method to predict.

LimeQO+ uses query features and matrix embeddings to train and predict.

Total Latency Time (workload latency) is simply adding up the observed row
minimum in the workload matrix.
Offline Exploration Time is the total time to execute the query plan + overhead
time of the technique.

Caption: Both LimeQO and LimeQO+ outperform baselines.
Even without any features, pure linear method (LimeQO) can perform
nearly as effective as the one using complex Neural Network (LimeQO+).

Low Rank Learning for Offline Query Optimization
Zixuan Yi1, Yao Tian2, Zack Ives1, Ryan Marcus1

1 University of Pennsylvania 2 The Hong Kong University of Science and Technology

1 ? 10
3 ? ?

10 2 ?

?

?
20

?5 ? 50

෡𝑀𝑖𝑗 = 𝑄𝑖𝐻𝑗

…

…

…

…

q1

q2

q3

qn

h1 h2 h3 hk

M

× ≈Q

𝑄𝑖

H 𝐻𝑗
n

k

r

r

Qi

Hj Predicted Latency

FC Layer

FC Layer

Pooling

1 x 1

1 x 128
1 x r

1 x r

1 x 64

1 x 32

1 x 256 1 x 128

Option #1: LimeQO
(Linear Method Only)
want a low overhead solution

Use Alternating Least Squares
Algorithm to recover the
unobserved entries
from the observed ones.

Option #2: LimeQO+
(Adding Query Features in)
higher compute, better perf

Use query plan features in
tree structure (including
cardinality estimation result
and cost) and
QH Matrix embeddings
as input.

Active Learning on a Low Rank Matrix
Active Learning: intelligently select which new pieces of
information to observe next
In our case: to reduce the exploration cost by revealing
the most informative entries

Tree Convolution
Layers

Offline Exploration Time

Latency Time

min_observe(i)

m(i,j)
min_observe(i) - m(i,j)

m(i,j)

For query i, I want to explore a new hint j

Explore the queries with the biggest improvement
ratio: (min_observe(i) – m(i,j))/m(i,j)
How to predict m(i,j)? LimeQO / LimeQO+

System
Model

1️⃣ the new hint improves!☺

2️⃣ the new hint regresses meaning that m(i,j) is worse than min_observe(i)
It’s okay! We timed out after min_observe(i) and use censored technique that learn from this time out data.

Overhead Time comparison: LimeQO’s overhead
time is only 10 seconds, while LimeQO+ takes 1
hour (1/6 of the offline exploration).

My
website

Code

	Slide 1
	Slide 2
	Slide 3
	Slide 4

