
Simple, low-overhead 
linear methods can be almost 
as effective as complex 
deep learning approach for 
Offline Learned QO.
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Workload Matrix M: 
Each row represents a SQL query. 
Each column represents a hint (parameterization of the QO).
One possible hint: Disable Nested Loop Join, Enable Hash Join, Enable Merge Join, Enable 
Index Scan, Enable Seq Scan, Enable Index-only Scan
Each entry represents the latency time for DB to execute the query under the hint. 

M is LOW RANK 
Intuition: two queries that behave similarly on some hints are likely to behave similarly on other hints as well. 

Why? Current Learned QOs cause unpredictable 
regressions. (“my query was fast yesterday, why is 
it slow today?”)
Observation: Repetitive workload!
Study at RedShift: 60% of queries are repeated!
How? verify that potential new query plans are 
actually better than the default plan.

Goal: simultaneously minimize
the workload latency and the total offline 
exploration time, while maintaining the “no-
regressions” guarantee.

Offline Learned QO

Checkout 
the paper 
for more 
detailed 
info 

Experiments Dataset: CEB core workload (3133 queries in total, 49 hints) 
• takes ~3 hours for PostgreSQL default to finish 
• ~1 hour if every query is chosen the optimal hint

QO-Advisor select the unexplored entry with the lowest optimizer cost.

Bao-Cache the technique of Bao adapted to offline exploration. Cache the 
results to guarantee no regression.
Random randomly explore unobserved entries.

Greedy explore the tail latency queries first.

LimeQO uses only Linear Method to predict.

LimeQO+ uses query features and matrix embeddings to train and predict.

Total Latency Time (workload latency) is simply adding up the observed row 
minimum in the workload matrix.
Offline Exploration Time is the total time to execute the query plan + overhead 
time of the technique. 

Caption: Both LimeQO and LimeQO+ outperform baselines. 
Even without any features, pure linear method (LimeQO) can perform 
nearly as effective as the one using complex Neural Network (LimeQO+).
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Option #1: LimeQO 
(Linear Method Only)
want a low overhead solution

Use Alternating Least Squares
Algorithm to recover the 
unobserved entries
from the observed ones.

Option #2: LimeQO+ 
(Adding Query Features in)
higher compute, better perf

Use query plan features in 
tree structure (including 
cardinality estimation result 
and cost) and 
QH Matrix embeddings 
as input.

Active Learning on a Low Rank Matrix 
Active Learning: intelligently select which new pieces of 
information to observe next
In our case: to reduce the exploration cost by revealing 
the most informative entries 
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For query i, I want to explore a new hint j

Explore the queries with the biggest improvement 
ratio: (min_observe(i) – m(i,j))/m(i,j)
How to predict m(i,j)? LimeQO / LimeQO+

System 
Model

1️⃣ the new hint improves!☺

2️⃣ the new hint regresses meaning that m(i,j) is worse than min_observe(i)
It’s okay! We timed out after min_observe(i) and use censored technique that learn from this time out data.

Overhead Time comparison: LimeQO’s overhead 
time is only 10 seconds, while LimeQO+ takes 1 
hour (1/6 of the offline exploration).
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